Carity< D > | How many input arguments does the largest constructor of the distribution have? |
Carity< Beta > | |
Carity< Categorical > | |
Carity< DiscreteUniform > | |
Carity< Gamma > | |
Carity< Normal > | |
Carity< Parameter< V > > | |
Carity< Poisson > | |
Carity< Triangular > | |
Carity< Uniform > | |
Carray_< T, N > | |
Cauxiliary_info< D > | |
Cauxiliary_info< Categorical > | |
CBeta | A beta distribution parameterized by shape parameters alpha and beta |
CCategorical | |
►Ccollection_t | |
►Cvalue_collection_t< record_t< DTypes< Ts... > > > | |
Crecord_collection_t< O, Ts > | Collects records generated by an inference algorithm into an empirical posterior distribution over records and output values |
Cvalue_collection_t< V > | A collection of sampled values |
CDefaultPolicy< D > | Identity function between sets of distributions |
CDiscreteUniform | A discrete uniform distribution over integers |
CDistribution< Impl, V > | Abstract base class that can be subclassed for creation of new distributions |
►CDistribution< Parameter< V >, V::type > | |
CParameter< V > | |
Cdynamic_bounded< T > | |
Cdynamic_bounded< double > | |
CProductGenerator< Impl, V, O, Ts >::EmitType | Product of values (mapping from address to result type of underlying queryer) and distributions (mapping from address to first-encountered distribution at that address) |
CEndog | |
CExog | |
CGamma | |
Cgr_output< O, Ts > | Product of a gr_pair and the output of a probabilistic program |
Cgr_pair< Ts > | |
Cgr_pair< Ts... > | |
Cgraph_ir< Ts > | A graph intermediate representation of a causal model |
Cgraph_ir< Ts... > | |
Cgraph_node< D > | A fundamental data structure of which a graph intermediate representation is composed |
Cgraph_node_construct< D, Ts > | Finds and tracks parents/children of nodes involved in a sample or observe statement |
►Cgraph_node_construct< D, Ts... > | |
Cgraph_observe_node_construct< D, V, Ts > | Creates an observe node in a graph_ir |
Cgraph_sample_node_construct< D, RNG, Ts > | Creates a sample node in a graph_ir |
Chas_proposal< C > | Will the passed class template have an associated proposal distribution? |
Chas_proposal< GenericMetropolis > | |
Chas_proposal< ImportanceSampling > | |
Cinf_options_t | Options used by all inference algorithms |
CInference< A, I, O, V, Q, Ts > | Universal base class for inference methods |
►CInference< AncestorMetropolis, I, O, V, Q, Ts... > | |
CAncestorMetropolis< I, O, V, Q, Ts > | Metropolis Hastings using the prior distribution as the proposal |
►CInference< GenericMetropolis, I, O, V, Q, Ts... > | |
CGenericMetropolis< I, O, V, Q, Ts > | Generic Metropolis-Hastings algorithm with user-specified proposal distribution |
►CInference< ImportanceSampling, I, O, V, Q, Ts... > | |
CImportanceSampling< I, O, V, Q, Ts > | Importance sampling using an arbitrary user-defined proposal distribution |
►CInference< LikelihoodWeighting, I, O, V, Q, Ts... > | |
CLikelihoodWeighting< I, O, V, Q, Ts > | Likelihood weighting importance sampling, using the prior as the proposal |
Cinference_state< C, I, O, Ts > | State that is used by inference algorithms |
Cinference_state< A, I, O, Ts... > | |
►Cinference_state< AncestorMetropolis, I, O, Ts... > | |
Cinference_state< GenericMetropolis, I, O, Ts... > | |
Cinference_state< ImportanceSampling, I, O, Ts... > | |
Cinput_types< D > | What are the types passed as arguments to the largest constructor? |
Cinput_types< Beta > | |
Cinput_types< Categorical > | |
Cinput_types< DiscreteUniform > | |
Cinput_types< Gamma > | |
Cinput_types< Normal > | |
Cinput_types< Parameter< V > > | |
Cinput_types< Poisson > | |
Cinput_types< Triangular > | |
Cinput_types< Uniform > | |
Cglppl_algos::likelihood_weighting | |
Cmapping< From, To > | |
Cmapping< A< T >, A< T > > | |
Cmapping< B, A > | |
Cmapping< unbounded< double >, unit_interval< double > > | |
Cmapping< unbounded< T >, non_negative< T > > | |
CNo | |
Cnode_spec | |
Cnode_t< D > | A fundamental data structure that includes address, distribution, sampled value type, score, whether the value was observed, and a markov process over interpretations |
CNodeBlock | |
CNodeCondition | |
CNodeParameter | |
CNodePropose | |
CNodeReplace | |
CNodeReplay | |
CNodeStandard | |
Cnon_negative< T > | |
CNormal | |
CNormalPolicy< D > | Every continuous distribution type is approximated by a normal distribution |
CObs | |
Coutput_dim< D > | What are the dimensions of the output of calling .sample(...) ? |
Coutput_domain< D > | In what domain is the output? |
Coutput_domain< Beta > | |
Coutput_domain< Gamma > | |
Coutput_domain< Normal > | |
Coutput_domain< Parameter< V > > | |
Coutput_domain< Poisson > | |
Coutput_domain< Triangular > | |
CParamConstructor< V, Ts > | |
Cparameter_match< D, MapTo, O, Ts > | |
Cparameter_match< D, Gamma, O, Ts... > | Computes gamma distribution parameter updates from posterior samples |
Cparameter_match< D, Normal, O, Ts... > | Computes normal distribution parameter updates from posterior samples via moment matching |
Cparameter_match< Parameter< Constraint< BaseType > >, Parameter< Constraint< BaseType > >, O, Ts... > | Identity function on parameter value |
CParameterMatching< Policy, QueryResult, I, O, Ts > | |
►Cplate_base_< D > | |
Cstatic_plate< D, N > | Represents \(N\) iid random variables |
CPoisson | |
CProductGenerator< Impl, V, O, Ts > | Generates a queryer that returns a fully factored collection of views |
Cprogram_info | |
Cprogram_rep | |
►CQueryer< Impl, V, O, Ts > | Interface to all querying mechanisms for sample-based inference (and possibly other inference algorithms). Much computation that is associated with inference is implemented by subclasses of Queryer (rather than in inference algorithms themselves, as is often done) |
►CWeighted< std::unique_ptr< value_collection_t< V > >, O, Ts... > | |
CWeightedValue< std::unique_ptr< value_collection_t< V > >, O, Ts... > | |
►CWeighted< std::shared_ptr< record_collection_t< O, Ts... > >, O, Ts... > | |
CWeightedRecord< typename, O, Ts > | A collection of weighted records |
►CQueryer< LogSumExpQ, double, O, Ts... > | |
►CLogSumExpQ< double, O, Ts... > | |
CWeighted< std::unique_ptr< value_collection_t< V > >, O, Ts... > | |
CWeighted< std::shared_ptr< record_collection_t< O, Ts... > >, O, Ts... > | |
CWeighted< V, O, Ts > | Access to all sample weights |
CWeightedMean< typename, O, Ts > | Computes the mean of the specified sample site with O(1) memory |
CLogSumExpQ< typename, O, Ts > | Computes a streaming log-sum-exp |
►CQueryer< Optimizer, V, O, Ts... > | |
COptimizer< V, O, Ts > | Optimizes a value function and returns the argmax value |
►CQueryer< Q, EmitType, O, Ts... > | |
CProductGenerator< Impl, V, O, Ts >::Q< typename, typename,... > | A queryer that emits \(V[p(z|x)] = \prod_a V[p(z_a|x)]\) |
►CQueryer< Weighted, V, O, Ts... > | |
CWeighted< V, O, Ts > | Access to all sample weights |
►CQueryer< WeightedMean, double, O, Ts... > | |
CWeightedMean< typename, O, Ts > | Computes the mean of the specified sample site with O(1) memory |
►CQueryer< WeightedMeanStd, std::pair< double, double >, O, Ts... > | |
CWeightedMeanStd< typename, O, Ts > | Computes the mean and standard deviation of the specified sample site with O(1) memory |
►CQueryer< WeightedRecord, std::shared_ptr< record_collection_t< O, Ts... > >, O, Ts... > | |
CWeightedRecord< typename, O, Ts > | A collection of weighted records |
►CQueryer< WeightedValue, std::unique_ptr< value_collection_t< V > >, O, Ts... > | |
CWeightedValue< std::unique_ptr< value_collection_t< V > >, O, Ts... > | |
Crecord_t< DTs > | |
Crecord_t< DTypes< Ts... > > | A fundamental data structure that holds a mapping from addresses to nodes, an insertion order, and a record-level interpretation |
CRecordBlock< Type > | |
CRecordBlock< Obs > | |
CRecordBlock< Sample > | |
CRecordReplace | |
CRecordReplay | |
CRecordRewrite | |
CRecordStandard | |
CSample | |
►Cslice_base_< D, N > | |
Cslice_plate< D, N > | Represents a vector of \(N\) random variables |
Ctranslation< D > | |
Ctranslation< Categorical > | |
Ctranslation< Gamma > | |
Ctranslation< Normal > | |
Ctranslation< Value< double > > | |
Ctranslation< Value< int > > | |
Ctranslation< Value< unsigned > > | |
Ctranslation< Value< unsigned long > > | |
CTriangular | |
Ctyped_map< Policy, Input, Ds > | A unordered map with value type equal to a sum type of input type and one or more distribution types, parameterized by an update Policy |
Cunbounded< T > | |
CUniform | A continuous uniform distribution over doubles |
Cunit_interval< T > | |
Cunit_interval< double > | |
CUpdate< Impl, Policy, QueryResult, I, O, Ts > | Experimental base class of typed_map -based update logic |
CUpdate< Impl, Policy, QueryResult, I, O, Ts... > | |
►CUpdate< ParameterMatching, Policy, FilterValueType< O, Ts... >, I, O, Ts... > | |
CParameterMatching< Policy, FilterValueType< O, Ts... >, I, O, Ts... > | Computes a variational approximation to posterior from posterior samples |
►CUpdate< ParameterMatching, Policy, ProductGenerator< WeightedMeanStd, std::pair< double, double >, O, Ts... >::EmitType, I, O, Ts... > | |
CParameterMatching< Policy, typename ProductGenerator< WeightedMeanStd, std::pair< double, double >, O, Ts... >::EmitType, I, O, Ts... > | Computes a variational approximation to posterior from (mean, standard deviation) pairs |
CUpdateFilter< Impl, Policy, Queryer, Inference, I, O, Ts > | A filtering algorithm that operates on typed_map objects |
CValue< V > | A minimal wrapper of a value that is tracked in a graph_ir |
CWeightedValue< V, O, Ts > | A collection of weighted values from a single site |