lppl  v2.0.0
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 12]
 Nglppl_algos
 CAncestorMetropolisMetropolis Hastings using the prior distribution as the proposal
 CarityHow many input arguments does the largest constructor of the distribution have?
 Carity< Beta >
 Carity< Categorical >
 Carity< DiscreteUniform >
 Carity< Gamma >
 Carity< Normal >
 Carity< Parameter< V > >
 Carity< Poisson >
 Carity< Triangular >
 Carity< Uniform >
 Carray_
 Cauxiliary_info
 Cauxiliary_info< Categorical >
 CBetaA beta distribution parameterized by shape parameters alpha and beta
 CCategorical
 Ccollection_t
 CDefaultPolicyIdentity function between sets of distributions
 CDiscreteUniformA discrete uniform distribution over integers
 CDistributionAbstract base class that can be subclassed for creation of new distributions
 Cdynamic_bounded
 Cdynamic_bounded< double >
 CEndog
 CExog
 CGamma
 CGenericMetropolisGeneric Metropolis-Hastings algorithm with user-specified proposal distribution
 Cgr_outputProduct of a gr_pair and the output of a probabilistic program
 Cgr_pair
 Cgraph_irA graph intermediate representation of a causal model
 Cgraph_nodeA fundamental data structure of which a graph intermediate representation is composed
 Cgraph_node_constructFinds and tracks parents/children of nodes involved in a sample or observe statement
 Cgraph_observe_node_constructCreates an observe node in a graph_ir
 Cgraph_sample_node_constructCreates a sample node in a graph_ir
 Chas_proposalWill the passed class template have an associated proposal distribution?
 Chas_proposal< GenericMetropolis >
 Chas_proposal< ImportanceSampling >
 CImportanceSamplingImportance sampling using an arbitrary user-defined proposal distribution
 Cinf_options_tOptions used by all inference algorithms
 CInferenceUniversal base class for inference methods
 Cinference_stateState that is used by inference algorithms
 Cinference_state< AncestorMetropolis, I, O, Ts... >
 Cinference_state< GenericMetropolis, I, O, Ts... >
 Cinference_state< ImportanceSampling, I, O, Ts... >
 Cinput_typesWhat are the types passed as arguments to the largest constructor?
 Cinput_types< Beta >
 Cinput_types< Categorical >
 Cinput_types< DiscreteUniform >
 Cinput_types< Gamma >
 Cinput_types< Normal >
 Cinput_types< Parameter< V > >
 Cinput_types< Poisson >
 Cinput_types< Triangular >
 Cinput_types< Uniform >
 CLikelihoodWeightingLikelihood weighting importance sampling, using the prior as the proposal
 CLogSumExpQComputes a streaming log-sum-exp
 Cmapping
 Cmapping< A< T >, A< T > >
 Cmapping< B, A >
 Cmapping< unbounded< double >, unit_interval< double > >
 Cmapping< unbounded< T >, non_negative< T > >
 CNo
 Cnode_spec
 Cnode_tA fundamental data structure that includes address, distribution, sampled value type, score, whether the value was observed, and a markov process over interpretations
 CNodeBlock
 CNodeCondition
 CNodeParameter
 CNodePropose
 CNodeReplace
 CNodeReplay
 CNodeStandard
 Cnon_negative
 CNormal
 CNormalPolicyEvery continuous distribution type is approximated by a normal distribution
 CObs
 COptimizerOptimizes a value function and returns the argmax value
 Coutput_dimWhat are the dimensions of the output of calling .sample(...)?
 Coutput_domainIn what domain is the output?
 Coutput_domain< Beta >
 Coutput_domain< Gamma >
 Coutput_domain< Normal >
 Coutput_domain< Parameter< V > >
 Coutput_domain< Poisson >
 Coutput_domain< Triangular >
 CParamConstructor
 CParameter
 Cparameter_match
 Cparameter_match< D, Gamma, O, Ts... >Computes gamma distribution parameter updates from posterior samples
 Cparameter_match< D, Normal, O, Ts... >Computes normal distribution parameter updates from posterior samples via moment matching
 Cparameter_match< Parameter< Constraint< BaseType > >, Parameter< Constraint< BaseType > >, O, Ts... >Identity function on parameter value
 CParameterMatching
 CParameterMatching< Policy, FilterValueType< O, Ts... >, I, O, Ts... >Computes a variational approximation to posterior from posterior samples
 CParameterMatching< Policy, typename ProductGenerator< WeightedMeanStd, std::pair< double, double >, O, Ts... >::EmitType, I, O, Ts... >Computes a variational approximation to posterior from (mean, standard deviation) pairs
 Cplate_base_
 CPoisson
 CProductGeneratorGenerates a queryer that returns a fully factored collection of views
 Cprogram_info
 Cprogram_rep
 CQueryerInterface to all querying mechanisms for sample-based inference (and possibly other inference algorithms). Much computation that is associated with inference is implemented by subclasses of Queryer (rather than in inference algorithms themselves, as is often done)
 Crecord_collection_tCollects records generated by an inference algorithm into an empirical posterior distribution over records and output values
 Crecord_t
 Crecord_t< DTypes< Ts... > >A fundamental data structure that holds a mapping from addresses to nodes, an insertion order, and a record-level interpretation
 CRecordBlock
 CRecordBlock< Obs >
 CRecordBlock< Sample >
 CRecordReplace
 CRecordReplay
 CRecordRewrite
 CRecordStandard
 CSample
 Cslice_base_
 Cslice_plateRepresents a vector of \(N\) random variables
 Cstatic_plateRepresents \(N\) iid random variables
 Ctranslation
 Ctranslation< Categorical >
 Ctranslation< Gamma >
 Ctranslation< Normal >
 Ctranslation< Value< double > >
 Ctranslation< Value< int > >
 Ctranslation< Value< unsigned > >
 Ctranslation< Value< unsigned long > >
 CTriangular
 Ctyped_mapA unordered map with value type equal to a sum type of input type and one or more distribution types, parameterized by an update Policy
 Cunbounded
 CUniformA continuous uniform distribution over doubles
 Cunit_interval
 Cunit_interval< double >
 CUpdateExperimental base class of typed_map-based update logic
 CUpdateFilterA filtering algorithm that operates on typed_map objects
 CValueA minimal wrapper of a value that is tracked in a graph_ir
 Cvalue_collection_tA collection of sampled values
 CWeightedAccess to all sample weights
 CWeightedMeanComputes the mean of the specified sample site with O(1) memory
 CWeightedMeanStdComputes the mean and standard deviation of the specified sample site with O(1) memory
 CWeightedRecordA collection of weighted records
 CWeightedValueA collection of weighted values from a single site
 CWeightedValue< std::unique_ptr< value_collection_t< V > >, O, Ts... >