►Nglppl_algos | |
Clikelihood_weighting | |
CAncestorMetropolis | Metropolis Hastings using the prior distribution as the proposal |
Carity | How many input arguments does the largest constructor of the distribution have? |
Carity< Beta > | |
Carity< Categorical > | |
Carity< DiscreteUniform > | |
Carity< Gamma > | |
Carity< Normal > | |
Carity< Parameter< V > > | |
Carity< Poisson > | |
Carity< Triangular > | |
Carity< Uniform > | |
Carray_ | |
Cauxiliary_info | |
Cauxiliary_info< Categorical > | |
CBeta | A beta distribution parameterized by shape parameters alpha and beta |
CCategorical | |
Ccollection_t | |
CDefaultPolicy | Identity function between sets of distributions |
CDiscreteUniform | A discrete uniform distribution over integers |
CDistribution | Abstract base class that can be subclassed for creation of new distributions |
Cdynamic_bounded | |
Cdynamic_bounded< double > | |
CEndog | |
CExog | |
CGamma | |
CGenericMetropolis | Generic Metropolis-Hastings algorithm with user-specified proposal distribution |
Cgr_output | Product of a gr_pair and the output of a probabilistic program |
Cgr_pair | |
Cgraph_ir | A graph intermediate representation of a causal model |
Cgraph_node | A fundamental data structure of which a graph intermediate representation is composed |
Cgraph_node_construct | Finds and tracks parents/children of nodes involved in a sample or observe statement |
Cgraph_observe_node_construct | Creates an observe node in a graph_ir |
Cgraph_sample_node_construct | Creates a sample node in a graph_ir |
Chas_proposal | Will the passed class template have an associated proposal distribution? |
Chas_proposal< GenericMetropolis > | |
Chas_proposal< ImportanceSampling > | |
CImportanceSampling | Importance sampling using an arbitrary user-defined proposal distribution |
Cinf_options_t | Options used by all inference algorithms |
CInference | Universal base class for inference methods |
Cinference_state | State that is used by inference algorithms |
Cinference_state< AncestorMetropolis, I, O, Ts... > | |
Cinference_state< GenericMetropolis, I, O, Ts... > | |
Cinference_state< ImportanceSampling, I, O, Ts... > | |
Cinput_types | What are the types passed as arguments to the largest constructor? |
Cinput_types< Beta > | |
Cinput_types< Categorical > | |
Cinput_types< DiscreteUniform > | |
Cinput_types< Gamma > | |
Cinput_types< Normal > | |
Cinput_types< Parameter< V > > | |
Cinput_types< Poisson > | |
Cinput_types< Triangular > | |
Cinput_types< Uniform > | |
CLikelihoodWeighting | Likelihood weighting importance sampling, using the prior as the proposal |
CLogSumExpQ | Computes a streaming log-sum-exp |
Cmapping | |
Cmapping< A< T >, A< T > > | |
Cmapping< B, A > | |
Cmapping< unbounded< double >, unit_interval< double > > | |
Cmapping< unbounded< T >, non_negative< T > > | |
CNo | |
Cnode_spec | |
Cnode_t | A fundamental data structure that includes address, distribution, sampled value type, score, whether the value was observed, and a markov process over interpretations |
CNodeBlock | |
CNodeCondition | |
CNodeParameter | |
CNodePropose | |
CNodeReplace | |
CNodeReplay | |
CNodeStandard | |
Cnon_negative | |
CNormal | |
CNormalPolicy | Every continuous distribution type is approximated by a normal distribution |
CObs | |
COptimizer | Optimizes a value function and returns the argmax value |
Coutput_dim | What are the dimensions of the output of calling .sample(...) ? |
Coutput_domain | In what domain is the output? |
Coutput_domain< Beta > | |
Coutput_domain< Gamma > | |
Coutput_domain< Normal > | |
Coutput_domain< Parameter< V > > | |
Coutput_domain< Poisson > | |
Coutput_domain< Triangular > | |
CParamConstructor | |
CParameter | |
Cparameter_match | |
Cparameter_match< D, Gamma, O, Ts... > | Computes gamma distribution parameter updates from posterior samples |
Cparameter_match< D, Normal, O, Ts... > | Computes normal distribution parameter updates from posterior samples via moment matching |
Cparameter_match< Parameter< Constraint< BaseType > >, Parameter< Constraint< BaseType > >, O, Ts... > | Identity function on parameter value |
CParameterMatching | |
CParameterMatching< Policy, FilterValueType< O, Ts... >, I, O, Ts... > | Computes a variational approximation to posterior from posterior samples |
CParameterMatching< Policy, typename ProductGenerator< WeightedMeanStd, std::pair< double, double >, O, Ts... >::EmitType, I, O, Ts... > | Computes a variational approximation to posterior from (mean, standard deviation) pairs |
Cplate_base_ | |
CPoisson | |
►CProductGenerator | Generates a queryer that returns a fully factored collection of views |
CEmitType | Product of values (mapping from address to result type of underlying queryer) and distributions (mapping from address to first-encountered distribution at that address) |
CQ | A queryer that emits \(V[p(z|x)] = \prod_a V[p(z_a|x)]\) |
Cprogram_info | |
Cprogram_rep | |
CQueryer | Interface to all querying mechanisms for sample-based inference (and possibly other inference algorithms). Much computation that is associated with inference is implemented by subclasses of Queryer (rather than in inference algorithms themselves, as is often done) |
Crecord_collection_t | Collects records generated by an inference algorithm into an empirical posterior distribution over records and output values |
Crecord_t | |
Crecord_t< DTypes< Ts... > > | A fundamental data structure that holds a mapping from addresses to nodes, an insertion order, and a record-level interpretation |
CRecordBlock | |
CRecordBlock< Obs > | |
CRecordBlock< Sample > | |
CRecordReplace | |
CRecordReplay | |
CRecordRewrite | |
CRecordStandard | |
CSample | |
Cslice_base_ | |
Cslice_plate | Represents a vector of \(N\) random variables |
Cstatic_plate | Represents \(N\) iid random variables |
Ctranslation | |
Ctranslation< Categorical > | |
Ctranslation< Gamma > | |
Ctranslation< Normal > | |
Ctranslation< Value< double > > | |
Ctranslation< Value< int > > | |
Ctranslation< Value< unsigned > > | |
Ctranslation< Value< unsigned long > > | |
CTriangular | |
Ctyped_map | A unordered map with value type equal to a sum type of input type and one or more distribution types, parameterized by an update Policy |
Cunbounded | |
CUniform | A continuous uniform distribution over doubles |
Cunit_interval | |
Cunit_interval< double > | |
CUpdate | Experimental base class of typed_map -based update logic |
CUpdateFilter | A filtering algorithm that operates on typed_map objects |
CValue | A minimal wrapper of a value that is tracked in a graph_ir |
Cvalue_collection_t | A collection of sampled values |
CWeighted | Access to all sample weights |
CWeightedMean | Computes the mean of the specified sample site with O(1) memory |
CWeightedMeanStd | Computes the mean and standard deviation of the specified sample site with O(1) memory |
CWeightedRecord | A collection of weighted records |
CWeightedValue | A collection of weighted values from a single site |
CWeightedValue< std::unique_ptr< value_collection_t< V > >, O, Ts... > | |